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ABSTRACT

The efficiency of the Finite-Difference method is

improved by combining the full-wave analysis with a

quasi-static approach: Those regions of a structure

which require a spatial resolution far below the

wavelength are described by a quasi-static analysis.

As a consequence, the mesh size of the dynamic

problem and hence the numerical efforts can be

reduced significantly. The savings are particularly

high for miniaturized geometries such as used in

coplanar MMIC geometries.

INTRODUCTION

The design of microwave and millimeter wave
integrated circuits requires efficient and accurate
CAD tools. Among them, the field-oriented simu-
lation gains importance, which is a result of both the

trend towards higher packaging density and the
necessity to include housing effects. To this end, one

would like to analyze the entire chip by a 3D

approach. On the other hand, the smallest dimensions

to be included are in the range of microns, such as

the metallization thickness in coplanar MMICS.

Given the simulation methods and computer

facilities available so far, it is impossible to cover

this extremely wide range in spatial resolution due to

excessive numerical efforts. Therefore, the primary

goal in developing field-oriented MMIC simulation

methods is to improve efficiency.

This paper presents a new Finite-Difference

frequency domain approach to solve this problem. It
is tailored to the MMIC-typical situation and takes
advantage of the fact that the finest resolution
required is by orders of magnitude smaller than the

wavelength. Thus, a large part of the structure can be
analyzed with good accuracy by using quasi-static
assumptions. Therefore, we propose a hybrid formu-
lation where the geometrical details are treated by a

static approach using a fine mesh and the dynamic
problem is solved only on a relatively coarse grid.

This yields a considerable reduction in computa-
tional efforts.

METHOD OF ANALYSIS

The hybrid FD scheme consists of the following two-

step procedure (Fig. 1 illustrates the different levels
of discretization):

‘ coarse grid for dynamic

[ calculation

Fig. 1: CPW Cross-section: the different levels of discre-
tization for the static and the dynamic description

The structure (or only critical subregions) is ana-
lyzed by a static FD method with high resolution,
i.e., a dense mesh. The numerical expense is much
lower than for the corresponding full-wave solution.
Additionally, in the lossless case, the static data do
not change with frequency. Thereby, when varying
the frequency, this part of the analysis needs to be
calculated only once. The static results are incor-
porated into the dynamic FDFD analysis by means of
weighting factors for the integrals over the elemen-
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tary cells, Then the complete problem is solved on a with the residual error &

coarse mesh.
~ _ 6~–6&

(4)

Our approach is based on the integral formulation of
r

1+6*

the F;nite-Difference frequency domain (FDFD)

method [1], [2]. The Maxwellian equations are
Due to the fact that the relative dynamic and static

written in the form of integrals over the edges and
field distributions approach in critical subregions,

surfaces of the elementary cells. The principal of our such as metallic edges, the difference 6d-& and

hybrid approach is that we use the static information hence the resulting error 3, remains small. In this

(or any other a-priori knowledge of the field beha- way, weighting factors A for all line integrals and @

vior) to improve the integral approximation. for all surface integrals are introduced in the
dynamic FD approach. This leads to a substitution of

In the conventional scheme, the integrals are the field values in the FD-algorithm:

calculated simply by multiplying the field value in
the center with the respective cell length. This appro-

ximation yields the discretization error &, e.g. for the
line integral of E.:

Now the electric field values are interpreted as line

integrals, while the magnetic field values are
xm+Axm

~EX(X)ti=EX(Xm+ &nl/2)&n(l+8,) (1,

interpreted as surface integrals. The local averages of

the tensors of e and w are also substituted.

It is clear that the resulting error in the integral

approximation can be eliminated if the true mean

value is applied in eqn. 1 instead of the cell-center

value EX(x~+&rw/2). In many cases however, the

mean value can be determined with good accuracy

by a static analysis. Therefore, a weigthing factor Aex

is generated from the static field distribution E.,,(x)

A:=
Ex(xmx;hm 12). Ax~

=(1+8*) (2)

subsections or even the entire s~i-uctu~e. This enables
one, for instance, to discretize the slot of a MNIIC
coplanar waveguide with only one step in the
dynamic solution without sacrificing accuracy. It
should be pointed out that the inclusion of the
weighting factors as described above preserves
consistencey of the FD approach. Therefore, mode
orthogonality, energy conservation, and similar
theorems are fulfilled for the discretized system
within numerical accuracy, as in the conventional FD
approach. This feature is important, for instance,
with regard to S-parameter extraction.

and its discretization error &, respectively. The im-
RESULTS

proved description of the integral in eqn. 1 then reads

xm+AKm

JEx(x)d=A;Ex(x,n+km/2)km(l+6r)
The new formulation was implemented into a
FORTRAN code [4] to investigate efficiency and

‘m (3) numerical properties. In order to evaluate the
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improvement against the conventional approach the
propagation characteristics for typical MMIC
geometries are studied.

Fig.3 shows the relevant data for the propagation

constant of the CPW structure of Fig, 1: The new

approach is compared to the conventional method

(the percentage values refer to a conventional FD
simulation with a mesh density five times higher).
For both the conventional and the hybrid approach,
the same coarse mesh is used for the dynamic
solution. The hybrid method, however, employs a
static approach on a grid refined by a factor of five.
Fig.3 demonstrates that this improves accuracy

considerably.
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Fig.3: Percentage deviation in P against frequency for the
CPW structure of Fig. 1: solutions of conventional FD
method and the new hybrid approach; the deviations refer
to a full-wave analysis with a five times higher resolution.
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Fig.4: Data of Fig.3 for characteristic impedance Z

Fig.4. presents the corresponding data for the charac-

teristic impedance Z. The improvement is even better

here. As can be seen the error of the hybrid method
follows a f2 rule. This is clear since the discrepancies
between static and dynamic fields increase with
growing frequencies.

The advantages of the hybrid method are not

restricted to CPW structures as Fig.5 demonstrates

for the microstrip case.
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Fig.5: Percentage deviation in characteristic impedance Z

against frequency for a microstrip structure: comparison

between conventional FD method and hybrid approach.

(for other data see Fig.4).
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Fig.6: Convergence behaviour: percentage error in charac-

teristic impedance Z against number of cells n; hybrid

approach with fixed dynamic grid (60 cells) and static

mesh size varying (n cells) compared with conventional

solutions for 60 cells and n cells. (CPW structure as in

Fig.1).

Fig.6 provides information on convergence. The

error in characteristic impedance Z is plotted against

the number of cells in the CPW cross section. For the

hybrid approach, a coarse dynamic mesh with n=60

cells is applied while the static grid is varied with n.

Regarding the conventional method, the solution for
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the coarse mesh as well as that for the fine static grid

are included. As can be seen, the hybrid solution

with a fixed dynamic mesh converges to the correct

value when refining the static grid. Furthermore the

resulting error equals that of the full-wave solution

on the fine grid although the latter one is

computationally much more expensive.

Finally, Fig,7 illustrates the improvement in numeri-

cal efficiency compared with the conventional FDFD

approach. Given the mesh size n, both approaches
yield the same level of accuracy but the conventional

method requires more than one order of magnitude
more CPU time. This difference increases further
when more than one frequency point is treated
because the static calculation does not need to be
repeated. Using a higher number of mesh cells the
difference increases as well since the solution of a
static problem is faster than that of its full-wave

counterpart.
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Fig.7: CPU time of the hybrid and the conventional

method against number of cells (the data were generated

on a DEC 3000/800 Alpha Workstation).

As can be seen, considerable savings in CPU time
are obtained. This is true also for the storage which
is related to the mesh size n. Because of sparsity the
matrix size of both conventional and hybrid approach
grows linearly with n. Due to the simplified mathe-
matics in the static case, however, this type of ana-
lysis consumes only 30% of the corresponding full-
wave problem, Furthermore, only the critical sub-
regions of a structure need refinement. This further
increases the efficiency of the hybrid approach.

CONCLUSIONS

Summarizing the results the following conclusions
with regard to field-oriented MMIC simulation can
be drawn:

The hybrid static-dynamic FDFD formulation allows
for local mesh refinement while preserving the

essential features of the conventional Yee-scheme

(consistency, energy conservation, mode orthogo-

nality in waveguides). For typical MMIC CPW

structures, the computational effort is reduced by
more than one order of magnitude in CPU time and

by 2/3 in storage. This represents one step further
towards wafer-scale field-oriented MMIC design.
Work is in progress now in order to extend the new
approach to 3D analysis and the calculation of
scattering coefficients.
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